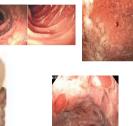


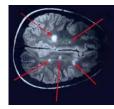
Autoimmunität

Dr. med. Urs Steiner

Autoimmune diseases

organ specific

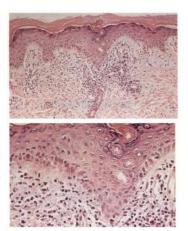

systemic

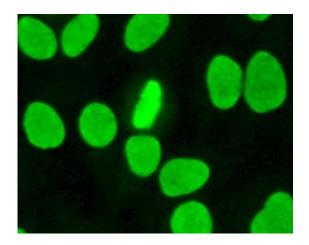


USZ Universitäts Spital Zürich

Medical history

- eczematous skin lesions since 2005
- scaring alopecia since 2006
- arthritis of the joints of fingers and toes since 2011
- Fatigue
- anxiety disorder/depression




Histology

 Skin biopsy: Interface-Dermatitis with vacuoles

J.S. 1971

Laboratory results

- Immune serology
 - ANA increased with increased anti SSA-, anti SS-B-, anti ds-DNA-, anti SmD-, anti-C1q-, anti Cardiolipid IgM- antibodies
 - complement factors C3 und C4 decreased
- Hematology

Universitäts Spital Zürich

- lymphopenia; hemoglobin and platelets normal
- Kidney- and liver parameter normal, urine sediment normal

Systemic Lupus erythematodes (SLE)

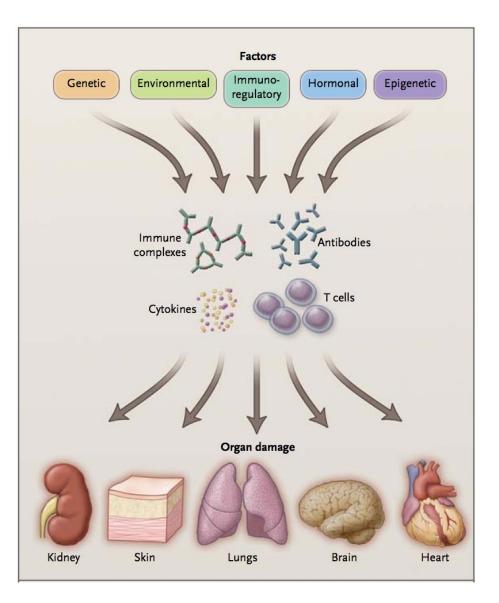
Systemic Lupus International Collaborating Clinics (SLICC) criteria

Clinical Criteria

- Acute cutaneous LE
- Chronic cutaneous LE
- Oral or nasal ulcers
- Non-scarring alopecia
- Arthritis
- Serositis
- Renal (Protein / Crea Ratio or Protein 24h urine >0.5g)
- Neurologic (seizures, psychosis, Myelitis)
- Hemolytic anemia
- Leukopenie (<4000/μL) or Lymphopenie (<1000/μL)
- Thrombozytopenia (<100.000/μL)

Immunologic Criteria

- ANA-Titer
- Anti-dsDNA
- Anti-Sm
- Anti-Phospholipid Ab
- Low complement (C3, C4, CH50)
- Direct Coombs -Test (not with hemolytic anemia)

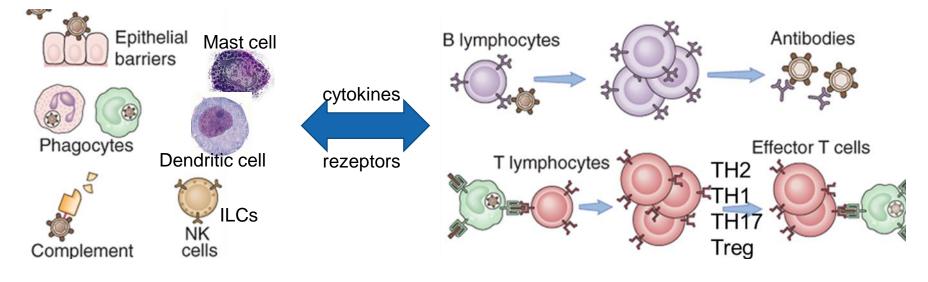

Classification as SLE:

≥ 4 criteria positiv (at least 1 clinical and 1 laboratory criteria)

OR

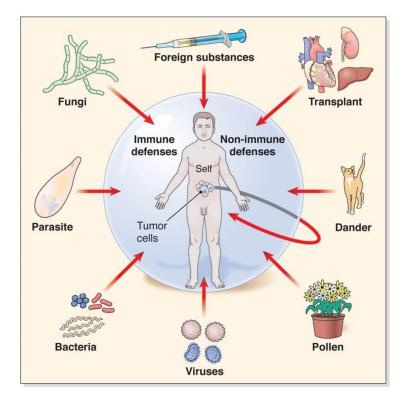
 Positive ANA or anti-dsDNA with biopsy proven Lupus-Nephritis

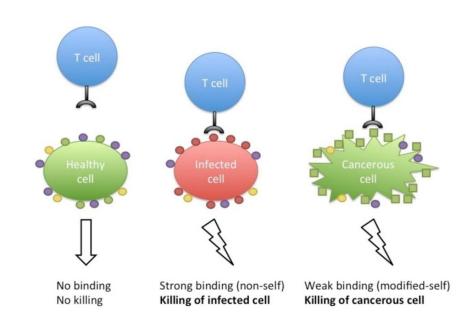
Systemic Lupus erythematodes (SLE)



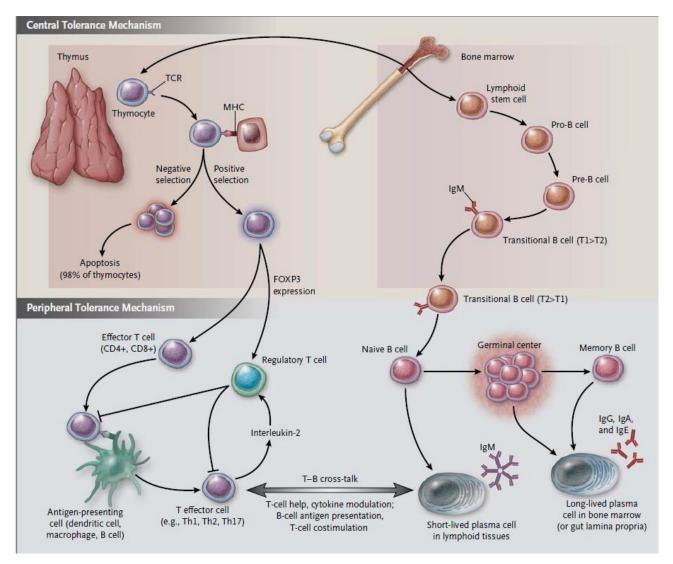
Immune System

Innate Immunity


Adaptive Immunity



Immunotolerance


Differentiaton of self and non-self

Immunotolerance

USZ Universitäts Spital Zürich

Autoimmunity

Dysregulation of the immune system

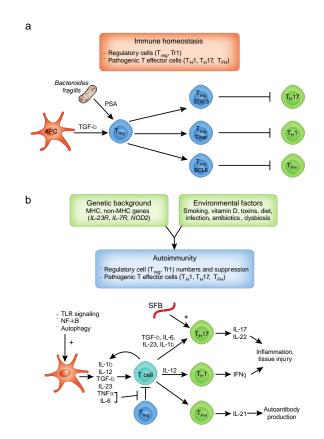
- Defence against infections
- Elimination of tumor cells
- Elimination of cell debris
- Defence of foreign cells (transplant)
- Elimination/supression of autoreactive immune cells → immunotolerance

 Excessive/uncontrolled immune mediated inflammation with damage of own cells/tissues

Autoimmunity

Dysregulation of the immune system

- Genetic mutations
 - \rightarrow in the MHC-Region on chromosome 6
 - \rightarrow of the innate immune function (eg NOD2-Protein \rightarrow M. Crohn)
 - \rightarrow of cell-receptors
 - → of cytokines and cytokine-receptors (IL-23) Selective survival advantage
 - \rightarrow of transcription factors


In a highly infectious environment?

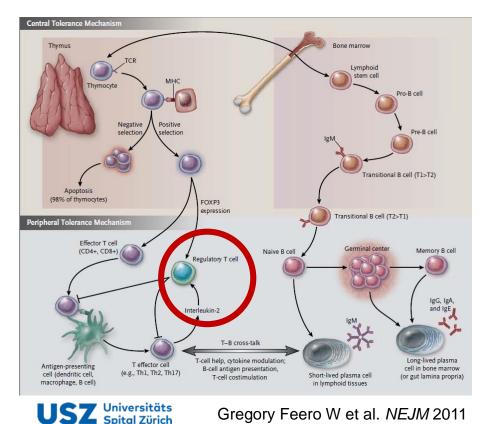
- Environmental factors
 - \rightarrow Infections
 - \rightarrow smoking
 - \rightarrow Microbiotica-nutrition
 - \rightarrow Toxins (dioxin)

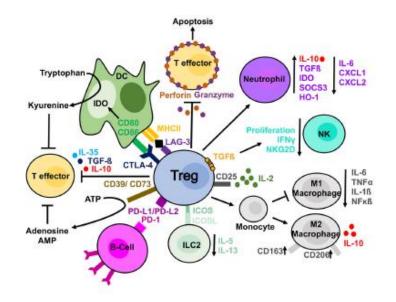
JSZ Universitäts Spital Zürich on a defined genetic background a specific environmental trigger becomes a risk

factor for developing autoimmune disease

Autoimmunity

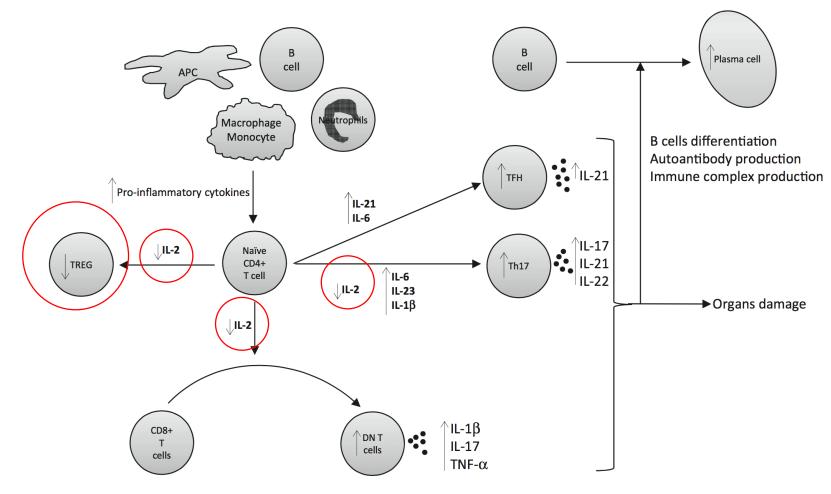
• Reduced Treg number and/or failure in their function



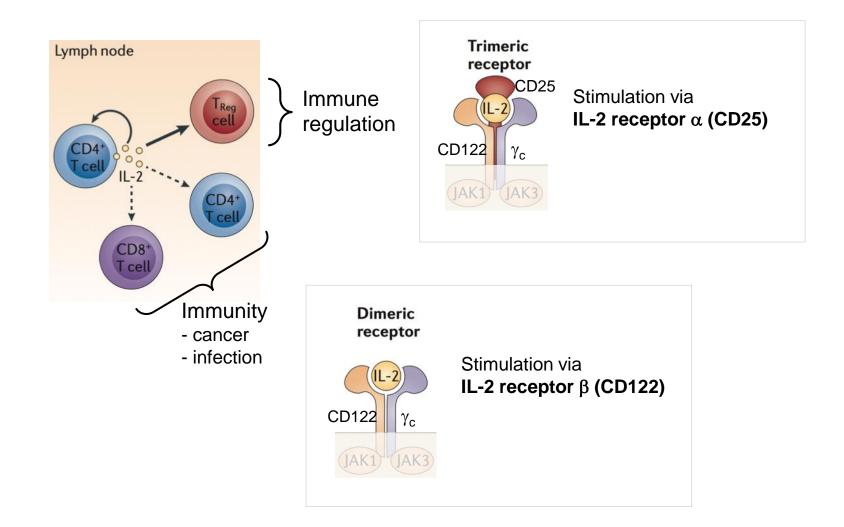

Kuchroo VK et al. Nature Medicine 2012

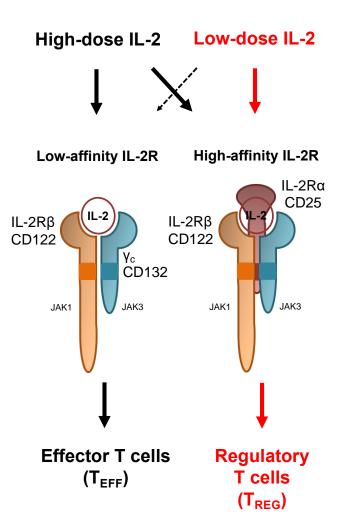
Regulatory Tcells in autoimmunity

Thymus is the crucial organ for the generation of Tregs

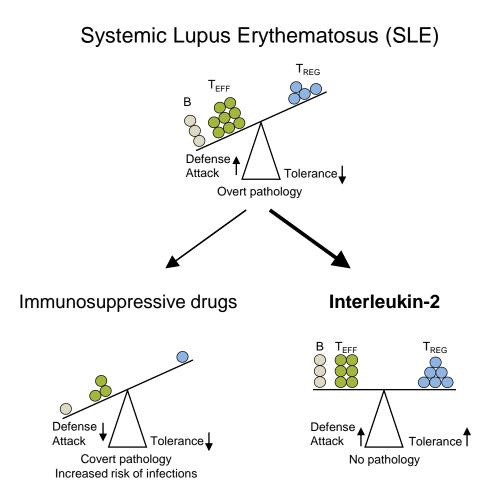

Treg suppression of different cells by direct and indirect mechanisms

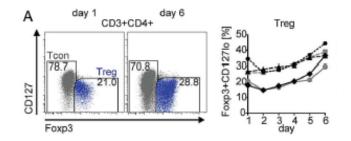
Romano et al. Front. Immunol. 2019

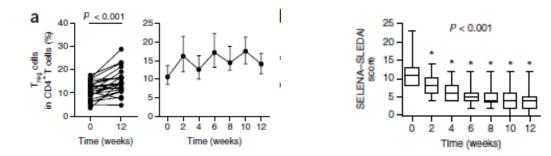

Role of IL-2 and regulatory T cells in SLE


Comte et al. Lupus 2015

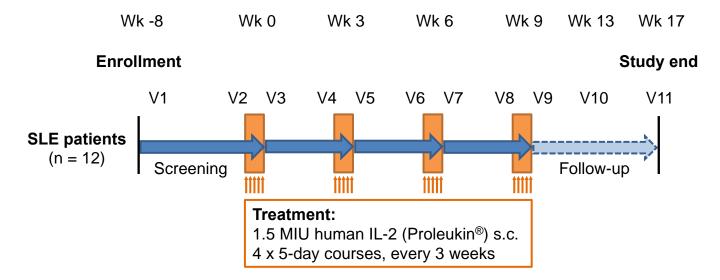
Biology of interleukin-2 (IL-2)


Biased IL-2 immunotherapy

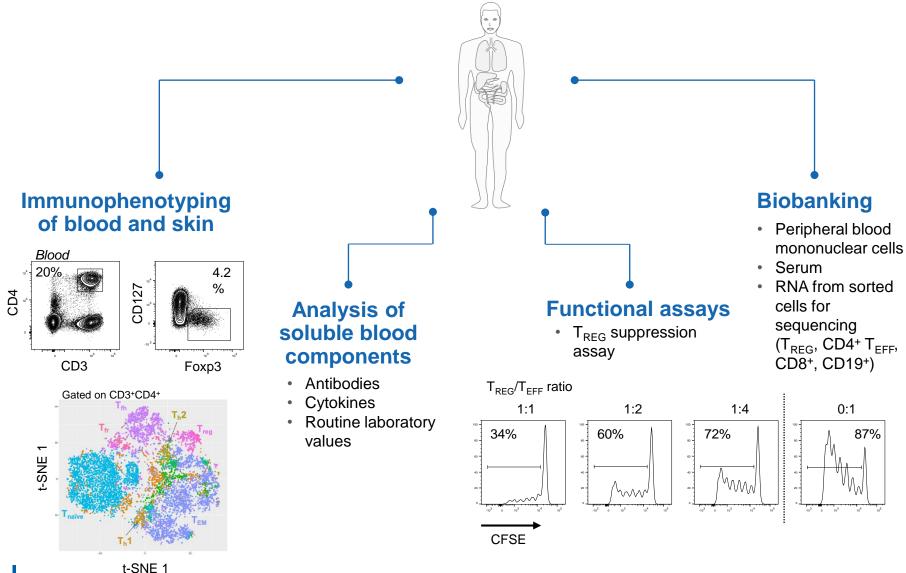

Adapted from Raeber et al., Immunol Rev 2018


Interleukin-2 and regulatory T cells (T_{REG})

Low dose IL-2 in SLE



Humrich et al. Ann Rheum Dis. 2015 von Spee-Mayer et al. Ann Rheum Dis. 2016 He et al. Nat Med. 2016 Rosenzwajg et al. Ann Rheum Dis. 2018

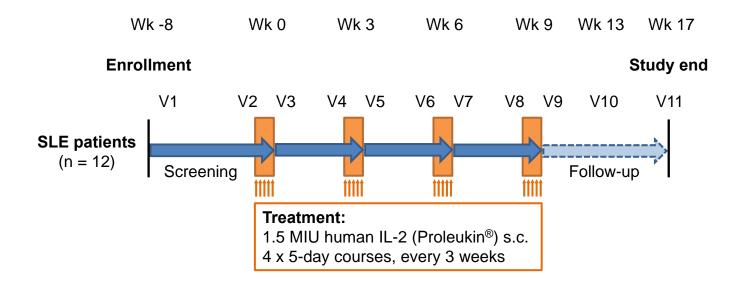

Low-dose IL-2 trial in SLE patients The Charact-IL-2 Trial (NCT03312335)

- **1° Endpoint:** Expansion of T_{REG} cells (V2 & V9)
- 2° Endpoints: Immunophenotyping in blood and skin (V2-V9)
 - Clinical response (V2, V5, V9)
 - Reduction in concomitant medication (V2-V9)
 - Safety (V2-V11)

Charact-IL-2 Trial – Experimental analyses

Charact-IL-2 Trial – Experimental analyses

BD FACS Symphony: Acquisition of two times 24-30 parameters


Table 1: Flow cytometry panels for the Charact-IL-2 trial.

Panel	Colors	Cellular subsets
A	13	<i>Lineage discrimination:</i> CD4 ⁺ and CD8 ⁺ T cells; Foxp3 ⁺ CD127 ^{lo} CD25 ^{hi} Treg; T resident memory cells. <i>Expression:</i> CD39, Ki67.
В	9	Lineage discrimination: Neutrophils (CD16, CD66b). Expression: CD124, CD132, CD123a1, CXCR1, CXCR2, MPO.
С	28	<i>Lineage discrimination:</i> B cells (memory, naïve, plasmablasts, regulatory B cells); NK cells (CD56 ^{brigth/dim}); NKT cells; ILCs (ILC1, ILC2, ILC3); DCs (BDCA1, BDCA3, CD16 monocyte derived DC, plasmacytoid DC); monocytes (classical, intermediate, non-classical); CD4 ⁺ T _{fh} , CD127 ^{lo} CD25 ^{hi} Treg; CD4 ⁺ and CD8 ⁺ T _{naïve} , T _{CM} , T _{EM} , T _{EMRA} ; CD4 ⁺ and CD8 ⁺ $\gamma\delta$ T cells.
		Expression: CD25, CD122, PD-1.
D	22	<i>Lineage discrimination:</i> CD4 ⁺ T _h 1, T _h 1 [*] , T _h 2, T _h 17, T _h 22, T _{fh} ; CD4 ⁺ and CD8 ⁺ T _{naïve} , T _{CM} , T _{EM} , T _{EMRA} , T _{SCM} ; CD4 ⁺ and CD8 ⁺ $\gamma\delta$ T cells; CD127 ^{lo} CD25 ^{hi} Treg.
		Expression: CD25, CD122, PD-1, TIM-3, CCR8.

Abbreviations: Tfh, follicular helper T; Treg, regulatory T; Tfr, follicular regulatory T; MPO, myeloperoxidase; NK, natural killer; ILC, innate lymphoid cell; DC, dendritic cell; Tnaïve, naïve T; TCM, central memory T; TEM, effector memory T; TEMRA, effector memory RA T; TSCM, stem cell memory T; PD-1, programmed cell death 1; TIM-3, T cell immunoglobulin and mucin-domain containing protein-3.

Charact-IL-2 Trial

- 11 patients included
- 9 have completet the study
- 1 additional patient needed
- Therapy is well tolerated and effective
- 2 patients decided to continue the therapy in off label use

Conclusion and future perspectives

- Regulatory T cells (Tregs) can prevent autoimmunity and control inflammation
- Low-dose IL-2 treatment:
 - is well tolerated and expands and activates Tregs
 - restores Treg homeostasis in a physiological way
 - directly addresses the pathophysilogy in SLE and has the potential to become a novel targeted treatment strategy in SLE
- The potential use of CD25-biased IL-2 complexes (Boymanlab, USZ) will further increase the in vivo half life of IL-2 and the selectivity for Tregs

Department of Immunology USZ and UZH

Vielen Dank für Ihre Aufmerksamkeit!

