EULAR Highlights: Systemische Sklerose

Oliver Distler
Department of Rheumatology
University Hospital Zurich
Switzerland

RESOLVE-1, a Phase 3 Trial of Lenabasum, a CB2 Agonist, for the Treatment of Diffuse Cutaneous Systemic Sclerosis

Robert Spiera, MD¹, Masataka Kuwana, MD, PhD², Dinesh Khanna, MD, MSc³, Laura Hummers, MD⁴, Tracy M. Frech, MD⁵, Wendy Stevens, MD⁶, Jessica Gordon, MD¹, Suzanne Kafaja, MD⁷, Marco Matucci-Cerinic, MD, PhD⁸, Oliver Distler, MD⁹, Eun Bong Lee, MD¹⁰, Yair Levy, MD¹¹, Jae-Bum Jun, MD¹², Scott Constantine, MS¹³, Nancy Dgetluck, MS¹³, Barbara White, MD¹³, Daniel E. Furst, MD¹⁴, and Christopher P. Denton, FRCP¹⁵, on behalf of the RESOLVE-1 Study Group

¹ Weill Cornell Medical College, New York City, NY, USA

Department of Allergy and Rheumatology, Nippon Medical School Graduate School of Medicine, Tokyo, Japan

⁵ University of Michigan Scleroderma Program, Ann Arbor, Michigan, USA

⁴ Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA

⁵University of Utah and Salt Lake City VA Health Care System Salt Lake City, UT, USA

⁶ Department of Rheumatology, St Vincent's Hospital, Melbourne, Victoria, Australia

David Geffen School of Medicine at University of California, Los Angeles, CA, USA

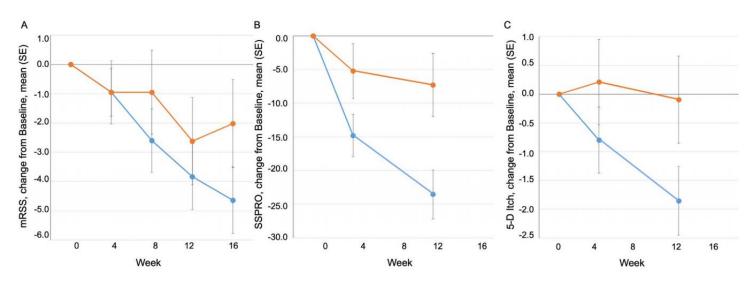
³ Department of Experimental Rheumatology, University of Florence & Division of Rheumatology AOUC, Florence, Italy

⁹ Department of Rheumatology, University Hospital Zurich, Zurich, Switzerland

¹⁶ Division of Rheumatology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea.

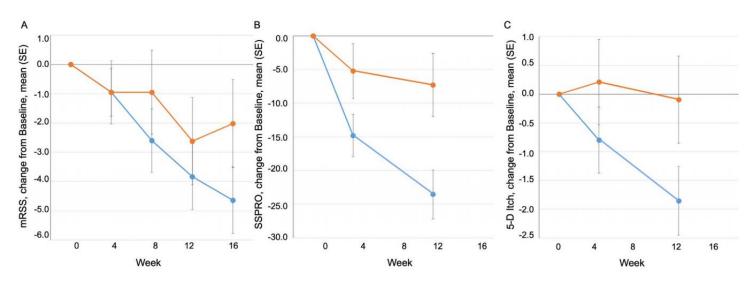
¹¹ Department of Internal Medicine, Meir Medical Center, Kfar Saha, Israel Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel

¹² Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Korea.


¹³ Corbus Pharmaceuticals, Inc. Norwood, MA, USA

¹⁴ Department of Rheumatology, University of California in Los Angeles; University of Washington, Seattle, Washington; University of Florence, Horence, Italy

¹⁵ Division of Medicine, Royal Free Hospital Campus, University College London, London, UK.


Safety and Efficacy of Lenabasum in a Phase II, Randomized, Placebo-Controlled Trial in Adults With Systemic Sclerosis

A randomized, double-blind, placebo-controlled, 9-center, multiple dose phase II study with 42 patients

Safety and Efficacy of Lenabasum in a Phase II, Randomized, Placebo-Controlled Trial in Adults With Systemic Sclerosis

A randomized, double-blind, placebo-controlled, 9-center, multiple dose phase II study with 42 patients

RESOLVE-1 Phase 3 study design

PRIMARY EFFICACY ENDPOINT

ACR CRISS score

- Week 52
- Lenabasum 20 mg BID vs placebo

DESIGN Double-blind, 365 dosed randomized 76 sites in NA. 52 weeks Europe and Asia Pacific 1:1:1 central 20 mg 5 mg Placebo randomization BID BID BID

SECONDARY ENDPOINTS

- Change in mRSS
- Change in HAQ-DI
- Change in FVC % predicted

ELIGIBILITY

- Diffuse cutaneous SSc
- Disease duration ≤ 6 years. If 3-6 years, then mRSS ≥ 15
- Background immunosuppressive therapies (IST) allowed if:
 - Stable for at least 8 weeks before screening
 - Corticosteroids not to exceed 10 mg prednisone per day or equivalent
- Decision to allo immunosuppres made to reflect practice

Baseline disease characteristics and immunosuppressive treatments

	Lenabasum 20 mg	Lenabasum 5 mg	Placebo	
Characteristics and treatments	N = 120	N = 120	N = 123	
		N (%) or mean ± SD		
Disease characteristic				
Disease duration, months	32.7 (19.94)	32.2 (17.62)	30.2 (16.84)	
mRSS (0 - 51)	22.1 ± 8.55	22.0 ± 7.35	23.3 ± 8.68	
MDGA (0 - 10)	5.3 ± 1.46	5.4 ± 1.58	5.6 ± 1.71	
HAQ-DI (0 - 3)	1.12 ± 0.782	1.07 ± 0.765	1.16 ± 0.768	
PtGA (0 - 10)	5.0 ± 2.10	4.8 ± 2.16	5.0 ± 2.10	
FVC, % predicted	81.3 ± 18.83	79.5 ± 16.13	78.9 ± 15.23	
Immunosuppressive therapies (IST)				
Any	107 (89.2)	94 (78.3)	103 (83.7)	
Mycophenolate	63 (52.5)	57 (47.5)	65 (52.8)	
Corticosteroids	28 (23.3)	33 (27.5)	39 (31.7)	
Methotrexate	26 (21.7)	24 (20.0)	19 (12.2)	
Others	32 (26.7)	28 (23.3)	28 (22.0)	
1 immunosuppressive therapy	69 (57.7)	56 (46.7)	61 (49.6)	
≥ 2 immunosuppressive therapies	38 (31.7)	38 (31.7)	42 (34.1)	
Treatment duration ≤ 2 years	67 (55.8)	59 (49.2)	72 (58.5)	
Treatment duration > 2 years	41 (34.2)	35 (29.2)	31 (25.2)	

Modified intent-to-treat (mTTT) population.

Primary and secondary efficacy outcomes

Outcome	Lenabasum 20 mg BID N = 100	Lenabasum 5 mg BID N = 113	Placebo BID N = 115
Primary			
ACR CRISS Step $1 = 0$	n = 1, 1 ILD	N = 4, 1 CHF, 3 ILD	N = 4, 1 renal crisis, 3 ILD
ACR CRISS score, median (IQR)	0.8880 (0.9360)	0.8270 (0.9180)	0.8870 (0.0710, 0.9990)
P-value - Ranked Score, MMRM	0.4972	0.3486	
Secondary			
Change in mRSS, mean (SD)	-6.7 (6.59)	-7.1 (6.24)	-9.1 (7.72)
Change in HAQ-DI, mean (SD)	-0.133 (0.4363)	-0.060 (0.3917)	-0.127 (0.4677)
Change in FVC, %, L, mean (SD)	-1.602 (6.9106)	-2.248 (6.2099)	-0.993 (8.6840)

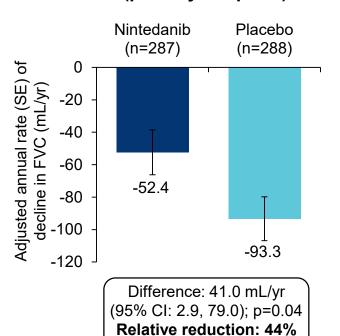
Modified intent-to-treat (mITT) population. Missing visits or ACR CRISS score core items due to COVID-19 were imputed using LOCF. Other missing data for any core items were imputed using Markov Chain Monte Carlo multiple imputation technique prior to calculating the score, but missing visits are not imputed. Combined inference statistics. Each imputation was analyzed using mixed model repeated measures (MMRM) on the ranked ACR CRISS score with region, disease duration, baseline mycophenolate use, visit, treatment, and treatment has visit interaction as the fixed effects and baseline mRSS as a covariate. Secondary outcomes were similarly analyzed, but using MMRM without ranked score.

- Improvement in placebo group far exceeded expectations based on literature and expert
- Unable to discern treatment effect on top of placebo effect

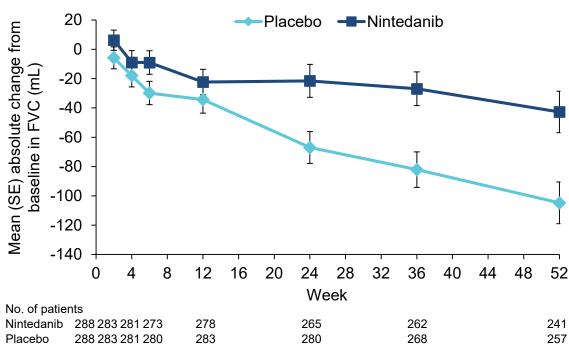
Pre-specified analysis: Background mycophenolate (MMF) had statistically significant effect on ACR CRISS score

Pre-specified: Impact of pre-specified fixed effects on MMRM model for ACR CRISS score. Also prespecified analysis for each core item of ACR CRISS score Post-hoc observation: Efficacy was greater when duration of MMF treatment was shorter at baseline. All subjects.

Effect	P value
Baseline MMF (Yes, No)	< 0.0177
Visit	< 0.0001
Baseline MMF*Visit	0.0290
Study drug treatment	0.8590
Study drug treatment*Visit	0.9980
Baseline mRSS (≤ 25, > 25)	0.4627
Region (US, non-US)	0.5395
Disease duration (≤2 years, > 2 years)	0.3946


	N	ACR CRISS Score (IQR)	Change in mRSS (SD)
No IST	49	0.352 (0.001, 0.919)	-4.5 (6.75)
All MMF	173	0.936 (0.308, 0.999)	-8.61 (7.15)
\leq 6 months	51	0.992 (0.537, 1.000)	-10.8 (8.58)
≤ l year	95	0.975 (0.454, 1.000)	-9.9 (7.90)
≤2 years	112	0.956 (0.361, 1.000)	-9.3 (7.75)
> 2 years	57	0.856 (0.219, 0.989)	-7.1 (5.22)

Mycophenolate (MMF) = mycophenolate mofetil, mycophenolic acid, or mycophenolate sodium


- MMF had statistically significant effect on ACR CRISS score that increased with visit. Other baseline factors of mRSS score, region, and disease duration did not have a statistically signifiance ACR CRISS score
- Duration of MMF treatment influenced efficacy results, with lower ACR CRISS scores and ch
 with longer treatment duration (> 2 years at baseline)

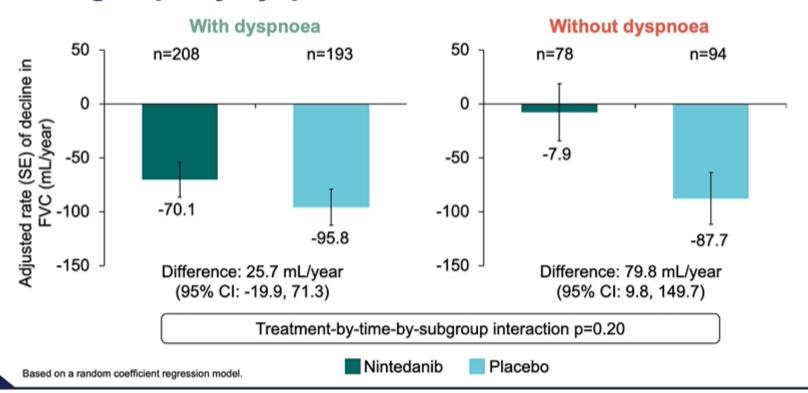
Senscis: Primary endpoint: Decline in FVC over 52 weeks

Annual rate of decline in FVC (mL/yr) (primary endpoint)

Change from baseline in FVC (mL) over 52 weeks

Decline in forced vital capacity (FVC) in patients with systemic sclerosis-associated interstitial lung disease (SSc-ILD) with and without dyspnoea: data from the SENSCIS trial

Elizabeth R Volkmann


Department of Medicine, Division of Rheumatology, University of California, David Geffen School of Medicine, Los Angeles, CA, USA

Subgroups by dyspnoea at baseline

402 (70.0%) had dyspnoea 172 (30.0%) did not have dyspnoea

Rate of decline in FVC (mL/year) over 52 weeks in subgroups by dyspnoea at baseline

Subclinical ILD is frequent and progresses across different connective tissue diseases

Anna-Maria Hoffmann-Vold, Helena Andersson, Silje Reiseter, Håvard Fretheim, Imon Barua, Torhild Garen, Øyvind Midtvedt, Ragnar Gunnarsson, Michael Durheim, Trond Mogens Aaløkken, Øyvind Molberg

Oslo University Hospital

Anna Hoffmann-Vold Rheumatologist Oslo University Hospital Oslo, Norway

OP0174

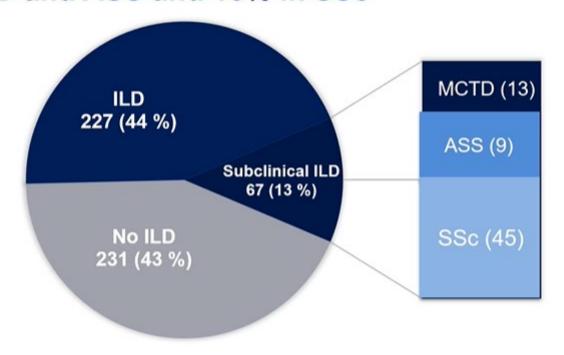
Patient cohort and ILD definitions

All CTD patients, including systemic sclerosis (SSc), anti-synthetase syndrome (ASS) and mixed connective tissue disease (MCTD) from the Oslo University Hospital diagnosed were included and ILD assessed by semi-quantitative assessment¹

Subclinical ILD

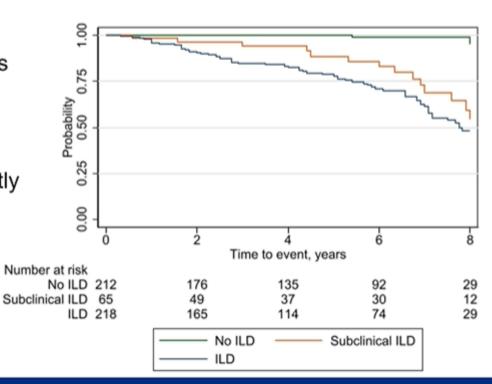
ILD extent <5% by semi-quantitative assessment

Preserved lung function with FVC >80% predicted


No respiratory symptoms

Clinical ILD

ILD extent >5% on HRCT
ILD extent <5% on HRCT
-with respiratory symptoms
-with FVC<80%


The prevalence of subclinical ILD varied between 10% in MCTD and ASS and 15% in SSc

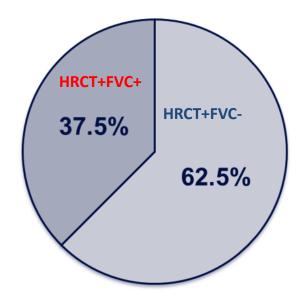
Subclinical ILD progressed in 38% of patients with CTD

- Over a median time of 4.5 years 95/395 (24%) showed lung fibrosis progression
 - -72 (26%) SSc
 - 23 (19%) MCTD patients
- Disease progression was frequently present in
 - subclinical ILD (38%)
 - ILD (51%) patients

How should patients with SSc be screened for ILD?

Interdisciplinary consensus statements on SSc-ILD

All patients should be screened at baseline using HRCT^{1–3}


Pulmonary function testing provides baseline parameters^{4–6}

- Forced vital capacity (FVC)
- Diffusing capacity of the lungs for carbon monoxide (DL_{CO})
- Auscultation

Pulmonary function testing alone misses the majority of patients with SSc-ILD

102 SSc patients (Zurich cohort)

- 64/102 (63%) with significant ILD on HRCT
- 27/102 (26%) with FVC <80% predicted
- 20/64 (38%) with significant ILD and FVC <80% predicted

Take home messages SSc

- Lenabasum (Cannabinoid-Receptor-Agonist): After a successful phase 2 trial, a completely negative phase 3 trial is presented. Secondary analysis with effects of MMF on overall disease (CRISS).
- SSc patients with meaningful ILD do not need to be symptomatic.
- These «preclinical» ILD patients progress and respond to therapy similar to patients with symptoms
- Lung function is insufficient to detect ILD
- Therefore, all patients with SSc need to be screened with HRCT to detect ILD